THEORY OF KNOWLEDGE Mathematics

"Good morning dayl" exclatmed the gardener, as she greeted the sunrise and her plants. Luttle did she know that strange things were lurking in the leaves and rich soll. Deep in the roots of the plants were fractals and networks, and from the cosmos, Vises, marigolds, and daisies Fibonacct numbers were starting at her.

Stie proceeded about her dally ritual of tending to her garden. At each place, something unusual appeared. but she was obllulous, captluated only by the obvious wonders that nature presented.

She first went to clear out her ferms. Remouting the dead fronds to expose the new flddle heads, she did not recognize the equiangular spirals greeting her and the fractal-luke formation ofleaves on the ferns. Suddenly, as the breeze shifted, she was struck by the lovely fragrance of the honeysuckle. Looking over, she saw how it was taking over the fence and getting into the peas. She dectled it defintiely needed some judicious pruning. She did not reallze that helices were at work. and the lef-handed helices of the

NETWORKS are mathematical diagrams which present a simpler picture of a problem or situation. Networks were used by Euler in the Königsberg bridge problem (see The Spell of Logic, Recreation, \& Games section). He reduced the problem to a simple diagram, which he analyzed and solved. Today networks are tools used in topology.

FIBONACCI NUMBERS $1,1,2,3$, 5, 8, 13, 21, ... Fiibonacci (Leonardo da Pisa) was one ol the leading mathematicians of the Middle Ages. Although he made significant contributions to the fields of arithmetic, algebra and geometry, he is popular today for this sequence ol numbers, which happened to be the solution to an

replicates itsell but in a smaller version. Thus, when a portion of a geometric fractal is magnified it looks exactly like the original version. In contrast, when a portion of a Euclidean object as a circle is magnitied it begins to appear less curved. A fern is an ideal example of fractal replication. Il you zero in on any portion of the iractal fern, it appears as the original fern leaf. A fractal fern can be created on a computer.
obscure problem appearing in his book Llber Abacl. In the 19th century. French mathematician Edouard Lucas edited a recreational mathematics work that included the problem. Il was at this time that Fibonacci's name was attached to the sequence. In nalure the sequence appears in:
honeysuckle had wound around some of the right-handed hellces of the peas. It required a careful hand to avold damaging her new crop of peas.

Next she moved to weed beneath the palm tree she had planted to glve her garden a somewhat exotic accent. Its branches were mouing In the breeze, and she had no idea that involute curves were brushing against her shoulders.

She looked over at her corn smuggly. "Hal" she thought. She had been hesitant to plant corn, but was encouraged by how well the young corn was progressing. Unbeknownst to her, triple junctions of
corn kemels would form withtn the ears.

How well the entire garden was shaping up and exploding with new growth/ Admtring the new green leaves on the maple tree.
she knew there was
something inherently pleasing in their shape nature's lines of symmetry had done their work well.

And nature's phyllotaxis was only evident to the trained eye in budding leaves on branches and stems of plants.

Glancing around, she focused on the carrot patch. She was proud of how they were doing. and noted they needed thinntrg to insure untformgood sized carrots. She did not want to rely on nature to tessellate space with carrots.

- Flowers with a Fibonacci number of petals (trilium, wildrose, bloodrool, cosmos, columbine, lily blossom, iris)
- Arrangement of leaves, Iwigs and stems is known as phyllotaxis.
 selected. The total number of leaves (not counting the lirst one you selected) is usually a
Fibonacci number in many plants, such as in elm. cherry or pear trees.

- The pine cone numbers: fit the left and right handed spirals on a pine cone are counted, the two numbers are very often consecutive Fibonacci numbers. This also holds true for sunllower seedheads and seedheads of other flowers. The same is true of pineapples. Looking at the base of a pineapple count the number of left and right spirals composed of hexagonal shapes scales. They should be consecutive Fibonacci numbers.

SPIRALS \& HELICES:

Spirals are mathematical forms which appear in many facets of nature, such as the curve of a fiddlehead lern, vines, shells, tornadoes, hurricanes, pine cones, the Milky Way, whirlpools. There are flat spirals, three dimensional spirals, right and left handed spirals, equiangular, logarithmic, hyperbolic, Archimedean spirals, and helices are just some of the many types of spirals which mathematics describes. The equiangular spiral appears in such growth forms of nature as the nautilus shell, a sunflower seedhead, the webs of Orb spiders. Some of the properties of the equiangular spiral are-angles formed from tangents to the spiral's radii are congruent (hence the term equiangular) - it increases at a geometric rate, thereby any radius is cut by the spiral into sections that form a geomelric progression its shape remains the same as it grows.

INVOLUTE CURVE: As a rope is wound or unwound around another curve (here a circle), it describe an involute curve. Involute is the shape found in the beak of an eagle, the dorsal fin ol a shark, and the tip of a hanging palm leal.

It was getting warm. so she decided she would continue the culttvat ton when the sun shifted. Meanwhile. she made one final assessment - admiring the combination offlowers, vegetables and other plants she had so thoughtully selected. But once more something escaped her. Her garden was full of spheres, cones, polyhedra
shapes, and she did not recognize them.

As nature puts forth tts wonders in the garden, most people are oblluious to the massive calculations and mathematical work that have become so routine in nature. Nature knous well how to work with restrictions of material and space, and produce the

Many types of symmetry appear in the garden. For example, in the above photograph one can find polnis symmetry in broccoll jlorettes and line symmetry in their leaves.
most harmonlous forms. And so, during each day of spring, the gardener will enter her domain with a gleam tn her eye. She will seek out the new growth and blossoms each day brings, unaware of the mathernatical beautles flowerting in her yard.

TRIPLE JUNCTION: A triple

 junction is the point where three line segments meet, and the angles at the intersection are each to 120°. Many natural occurrences result from restrictions caused by boundaries or availability of space. Triple junction is an equilibrium point toward which certain natural occurrences tend. Among other things, it is found in soap bubble clusters, the formation of kernels on the cob of corn, and the cracking of earth or stone.SYMMETRY: Symmetry is that perfect balance one sees and senses in the body of a butterlly, in the shape of a leaf, in the form of the human body, in the perfection of a circle. Frorn a mathematical point of view, an object is considered to possess line symmetry if one can find a line which divides it into two identical parts so that it it were possible to fold along that line both parts would match perfectly over one another. An object has point symmatry if infinitely many such lines exist for a particular point, for example a circle has point symmetry with respect to its center point.

TESSELLATE: To tessellate a plane simply means being able to cover the plane with flat tiles so tha there are no gaps and no tiles overlap, such as with regular hexagons, squares, or other objects. Space is tessellated or filled by three-dimensional objects such as cubes, or truncaled octahedra.

SECRETS OF TH

This famous drawing by leonardo
da Vinct appeared in the book. De
Diulna Proporllone, which Le-
onardo illustrated for malh-

emallclan luca Paoll in 1509. Leonardo wrote an extensive section on the proportions of the human borly In one of hils notebooks. He determined measurements and proportions for all parts of the body. Including the head, eyes, ears, hands and feet. His proporllons were based on numerous sludles, observallons and measurements. In his notebook, he also made reference to the works of Vilruvilus, the Roman architect (elrea 30 B.C.) who also dealt will the proportlons of the human body. Leonardo writes of how he was Influenced by Viltruvius:

Vilriutus, the architect, says in hits works on archillecture that the measurements of the human body are distributed by Nature as follous: ...I you open your legs so much as to decease your helght by $1 / 14$ and spread and ralse your arms tlll your middle fingers touch the level of the top of your head you must know that the center of the outspread llmbs will the in the navel ard the space bellveen the legs will be an equilateral triangle.

Leonardo adds. The length of a man's outspread arms is equal to his hetght. ${ }^{1}$

[^0]
[^0]: ${ }^{1}$ Richter. Jean Paul, cdlltor. The Notebooks of Leonardo da Vinct. wol. 1 . Dover Publicalions. 1970, New York.

